Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(3): e081682, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479748

RESUMO

INTRODUCTION: Seasonal malaria chemoprevention (SMC) involves repeated administrations of sulfadoxine-pyrimethamine plus amodiaquine to children below the age of 5 years during the peak transmission season in areas of seasonal malaria transmission. While highly impactful in reducing Plasmodium falciparum malaria burden in controlled research settings, the impact of SMC on infection prevalence is moderate in real-life settings. It remains unclear what drives this efficacy decay. Recently, the WHO widened the scope for SMC to target all vulnerable populations. The Ministry of Health (MoH) in Burkina Faso is considering extending SMC to children below 10 years old. We aim to assess the impact of SMC on clinical incidence and parasite prevalence and quantify the human infectious reservoir for malaria in this population. METHODS AND ANALYSIS: We will perform a cluster randomised trial in Saponé Health District, Burkina Faso, with three study arms comprising 62 clusters of three compounds: arm 1 (control): SMC in under 5-year-old children, implemented by the MoH without directly observed treatment (DOT) for the full course of SMC; arm 2 (intervention): SMC in under 5-year-old children, with DOT for the full course of SMC; arm 3 (intervention): SMC in under 10-year-old children, with DOT for the full course of SMC. The primary endpoint is parasite prevalence at the end of the malaria transmission season. Secondary endpoints include the impact of SMC on clinical incidence. Factors affecting SMC uptake, treatment adherence, drug concentrations, parasite resistance markers and transmission of parasites will be determined. ETHICS AND DISSEMINATION: The London School of Hygiene & Tropical Medicine's Ethics Committee (29193) and the Burkina Faso National Medical Ethics Committee (Deliberation No 2023-05-104) approved this study. The findings will be presented to the community; disease occurrence data and study outcomes will also be shared with the Burkina Faso MoH. Findings will be published irrespective of their results. TRIAL REGISTRATION NUMBER: NCT05878366.


Assuntos
Antimaláricos , Malária , Pré-Escolar , Humanos , Lactente , Antimaláricos/uso terapêutico , Burkina Faso/epidemiologia , Quimioprevenção/métodos , Combinação de Medicamentos , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estações do Ano , Criança
2.
Sci Rep ; 14(1): 2806, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307878

RESUMO

Despite progress towards malaria reduction in Peru, measuring exposure in low transmission areas is crucial for achieving elimination. This study focuses on two very low transmission areas in Loreto (Peruvian Amazon) and aims to determine the relationship between malaria exposure and proximity to health facilities. Individual data was collected from 38 villages in Indiana and Belen, including geo-referenced households and blood samples for microscopy, PCR and serological analysis. A segmented linear regression model identified significant changes in seropositivity trends among different age groups. Local Getis-Ord Gi* statistic revealed clusters of households with high (hotspots) or low (coldspots) seropositivity rates. Findings from 4000 individuals showed a seropositivity level of 2.5% (95%CI: 2.0%-3.0%) for P. falciparum and 7.8% (95%CI: 7.0%-8.7%) for P. vivax, indicating recent or historical exposure. The segmented regression showed exposure reductions in the 40-50 age group (ß1 = 0.043, p = 0.003) for P. vivax and the 50-60 age group (ß1 = 0.005, p = 0.010) for P. falciparum. Long and extreme distance villages from Regional Hospital of Loreto exhibited higher malaria exposure compared to proximate and medium distance villages (p < 0.001). This study showed the seropositivity of malaria in two very low transmission areas and confirmed the spatial pattern of hotspots as villages become more distant.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Peru/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Estudos Soroepidemiológicos , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia
3.
Nat Med ; 29(12): 3203-3211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884028

RESUMO

Anopheles stephensi, an Asian malaria vector, continues to expand across Africa. The vector is now firmly established in urban settings in the Horn of Africa. Its presence in areas where malaria resurged suggested a possible role in causing malaria outbreaks. Here, using a prospective case-control design, we investigated the role of An. stephensi in transmission following a malaria outbreak in Dire Dawa, Ethiopia in April-July 2022. Screening contacts of patients with malaria and febrile controls revealed spatial clustering of Plasmodium falciparum infections around patients with malaria in strong association with the presence of An. stephensi in the household vicinity. Plasmodium sporozoites were detected in these mosquitoes. This outbreak involved clonal propagation of parasites with molecular signatures of artemisinin and diagnostic resistance. To our knowledge, this study provides the strongest evidence so far for a role of An. stephensi in driving an urban malaria outbreak in Africa, highlighting the major public health threat posed by this fast-spreading mosquito.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Humanos , Malária/epidemiologia , Malária/parasitologia , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Etiópia/epidemiologia
4.
Sci Rep ; 13(1): 12998, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563178

RESUMO

Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When transmission reaches such low levels, it is important to understand the individuals and locations where exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. Serology is a useful tool in low transmission settings, providing insight into exposure over longer durations than PCR or RDT. We ran blood samples from a 2015 population-based survey in northern Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. We performed a risk-factor assessment on environmental, behavioural, demographic and household factors, and identified forest activity and longer travel times to healthcare as common risk-factors for exposure to P. falciparum and P. vivax. In addition, we used remote-sensing derived data and geostatistical models to assess environmental and spatial associations with exposure. We created predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of exposure. This study provides useful insight into the environmental, spatial and demographic risk factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings would be valuable in the case of resurgence of human malarias in the region.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Bornéu , Plasmodium vivax , Malária/epidemiologia , Malária Vivax/epidemiologia , Malária Falciparum/epidemiologia , Fatores de Risco , Plasmodium falciparum
5.
Remote Sens (Basel) ; 15(11): 2775, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37324796

RESUMO

Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d'Ivoire were assembled and labeled using open-source tools. We developed and applied a workflow using region-of-interest-based and deep learning methods to identify land cover types associated with vector breeding sites from very-high-resolution natural color imagery. Analysis methods were assessed using cross-validation and achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies, respectively. This classifier consistently identified the presence of other land cover types associated with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings and 0.71 for roads. This study establishes a framework for developing deep learning approaches to identify vector breeding sites and highlights the need to evaluate how results will be used by control programs.

6.
Front Med (Lausanne) ; 9: 929366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059850

RESUMO

The epidemiology of malaria changes as prevalence falls in low-transmission settings, with remaining infections becoming more difficult to detect and diagnose. At this stage active surveillance is critical to detect residual hotspots of transmission. However, diagnostic tools used in active surveillance generally only detect concurrent infections, and surveys may benefit from sensitive tools such as serological assays. Serology can be used to interrogate and characterize individuals' previous exposure to malaria over longer durations, providing information essential to the detection of remaining foci of infection. We ran blood samples collected from a 2016 population-based survey in the low-transmission setting of northern Lao PDR on a multiplexed bead assay to characterize historic and recent exposures to Plasmodium falciparum and vivax. Using geostatistical methods and remote-sensing data we assessed the environmental and spatial associations with exposure, and created predictive maps of exposure within the study sites. We additionally linked the active surveillance PCR and serology data with passively collected surveillance data from health facility records. We aimed to highlight the added information which can be gained from serology as a tool in active surveillance surveys in low-transmission settings, and to identify priority areas for national surveillance programmes where malaria risk is higher. We also discuss the issues faced when linking malaria data from multiple sources using multiple diagnostic endpoints.

7.
BMC Infect Dis ; 22(1): 619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840923

RESUMO

BACKGROUND: The effectiveness of a surveillance system to detect infections in the population is paramount when confirming elimination. Estimating the sensitivity of a surveillance system requires identifying key steps in the care-seeking cascade, from initial infection to confirmed diagnosis, and quantifying the probability of appropriate action at each stage. Using malaria as an example, a framework was developed to estimate the sensitivity of key components of the malaria surveillance cascade. METHODS: Parameters to quantify the sensitivity of the surveillance system were derived from monthly malaria case data over a period of 36 months and semi-quantitative surveys in 46 health facilities on Java Island, Indonesia. Parameters were informed by the collected empirical data and estimated by modelling the flow of an infected individual through the system using a Bayesian framework. A model-driven health system survey was designed to collect empirical data to inform parameter estimates in the surveillance cascade. RESULTS: Heterogeneity across health facilities was observed in the estimated probability of care-seeking (range = 0.01-0.21, mean ± sd = 0.09 ± 0.05) and testing for malaria (range = 0.00-1.00, mean ± sd = 0.16 ± 0.29). Care-seeking was higher at facilities regularly providing antimalarial drugs (Odds Ratio [OR] = 2.98, 95% Credible Intervals [CI]: 1.54-3.16). Predictably, the availability of functioning microscopy equipment was associated with increased odds of being tested for malaria (OR = 7.33, 95% CI = 20.61). CONCLUSIONS: The methods for estimating facility-level malaria surveillance sensitivity presented here can help provide a benchmark for what constitutes a strong system. The proposed approach also enables programs to identify components of the health system that can be improved to strengthen surveillance and support public-health decision-making.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Teorema de Bayes , Humanos , Indonésia/epidemiologia , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Saúde Pública
8.
J Environ Public Health ; 2021: 3220244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759971

RESUMO

Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission. The typical breeding habitats of Africa's second most important malaria vector Anopheles funestus are large, semipermanent water bodies, which make them potential candidates for targeted larval source management. This is a technical workflow for the integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise An. funestus breeding sites near two villages in an agricultural setting in Côte d'Ivoire. Using satellite remote sensing data, we developed an environmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from June to August 2021. To categorise the drone imagery, we also developed a land cover classification scheme with classes relative to An. funestus breeding ecology. We sampled 189 potential breeding habitats, of which 119 (63%) were positive for the Anopheles genus and nine (4.8%) were positive for An. funestus. We mapped 30.42 km2 of the region of interest including all water bodies which were sampled for larvae. These data can be used to inform targeted vector control efforts, although its generalisability over a large region is limited by the fine-scale nature of this study area. This paper develops protocols for integrating drone surveys and statistically rigorous entomological sampling, which can be adjusted to collect data on vector breeding habitats in other ecological contexts. Further research using data collected in this study can enable the development of deep-learning algorithms for identifying An. funestus breeding habitats across rural agricultural landscapes in Côte d'Ivoire and the analysis of risk factors for these sites.


Assuntos
Anopheles , Malária , Agricultura , Animais , Côte d'Ivoire , Ecossistema , Larva , Mosquitos Vetores , Estações do Ano , Fluxo de Trabalho
9.
Sci Rep ; 11(1): 11810, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083582

RESUMO

Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.


Assuntos
Ecossistema , Meio Ambiente , Malária/parasitologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium knowlesi , Animais , Humanos , Larva , Malária/epidemiologia , Malásia/epidemiologia , Razão de Chances , Vigilância em Saúde Pública , Fatores de Risco , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...